Infection Prevention in the Emergency Department

Stephen Y. Liang, MD*; Daniel L. Theodoro, MD; Jeremiah D. Schuur, MD, MHS; Jonas Marschall, MD

*Corresponding Author. E-mail: sliang@dom.wustl.edu.

Infection prevention remains a major challenge in emergency care. Acutely ill and injured patients seeking evaluation and treatment in the emergency department (ED) not only have the potential to spread communicable infectious diseases to health care personnel and other patients, but are vulnerable to acquiring new infections associated with the care they receive. This article will evaluate these risks and review the existing literature for infection prevention practices in the ED, ranging from hand hygiene, standard and transmission-based precautions, health care personnel vaccination, and environmental controls to strategies for preventing health care-associated infections. We will conclude by examining what can be done to optimize infection prevention in the ED and identify gaps in knowledge where further research is needed. Successful implementation of evidence-based practices coupled with innovation of novel approaches and technologies tailored specifically to the complex and dynamic environment of the ED are the keys to raising the standard for infection prevention and patient safety in emergency care. [Ann Emerg Med. 2014;64:299-313.]

Please see page 300 for the Editor’s Capsule Summary of this article.

A podcast for this article is available at www.annemergmed.com.

INTRODUCTION

Infection prevention is a major challenge in the rapid-paced, high-volume setting of emergency care. The emergency department (ED) is a complex and dynamic health care environment. Patients present with undifferentiated illnesses and variable acuity, ranging from the otherwise healthy to the critically ill. Risk recognition and medical decisionmaking are often based on limited and evolving data, under significant time and resource constraints. Patients await diagnosis, intervention, and disposition in close proximity of one another. With more than 129.8 million patient visits made to US EDs in 2010 alone, the ED is a busy place subject to rapid patient turnover and even crowding.1 The ED is a major gateway to inpatient medical care, contributing nearly half of all hospital admissions.2 It also constitutes our health care system’s front line in the response to public health emergencies and disasters. Amid these diverse roles and competing demands, infection prevention can easily be overlooked or superseded by other immediate and life-threatening issues. Yet significant infectious disease risks exist in emergency care that can carry substantial clinical consequences for both patients and health care personnel.

This article will address infection prevention in the ED through 2 central themes: preventing the transmission of infectious diseases from ill patients to health care personnel and other patients, and reducing the risk of infection associated with receiving emergency care. We will review the existing literature behind ED hand hygiene, standard and transmission-based isolation precautions, health care personnel vaccination, and environmental controls. Next, we will examine the threat of health care-associated infections related to central venous catheters, urinary catheters, mechanical ventilation, and other medical devices commonly used in the ED. We will conclude by identifying areas in which we can improve infection prevention in the ED today, as well as highlight gaps in knowledge that would benefit from further investigation.

PREVENTING TRANSMISSION OF INFECTIOUS ORGANISMS IN EMERGENCY SETTINGS

Hand Hygiene

Ignaz Semmelweis first recognized the fundamental role of hand hygiene in curbing the spread of contagion more than a century and a half ago while working in the obstetrics wards of Vienna General Hospital. At a time when puerperal fever was common and often fatal, Semmelweis demonstrated that physician hand disinfection with a chlorinated lime solution could lead to a significant decline in the incidence and mortality of this disease. To this day, hand hygiene remains the cornerstone of modern infection prevention and is the single most important strategy for curbing transmission of infectious microorganisms between patients, health care personnel, and the health care environment.3

Although normal human skin is routinely colonized with resident bacterial flora (eg, coagulase-negative Staphylococcus), transient flora can contaminate the skin of health care personnel through direct patient contact or contact with the patient’s immediate environment.3,4 Transient flora can include Staphylococcus aureus, Enterococcus, Gram-negative bacilli, and Clostridium difficile, all of which have been associated with health...
care–associated infections, as well as a host of respiratory and gastrointestinal viruses. When performed regularly and correctly, hand hygiene eliminates transient flora, thereby disrupting transmission of these microorganisms. Alcohol-based gel and foam products are superior to regular and antimicrobial soap in reducing bacterial counts and are therefore recommended for most routine hand hygiene. They also incur less of a time burden than soap and water, which may improve adherence to their use.5,6 Hospital-wide hand hygiene programs using alcohol-based hand rubs have been credited with significant reductions in health care–associated infections.7,8 However, scrubbing and rinsing with soap and water is recommended when caring for patients with *C. difficile* infection because alcohol-based products are not effective against its spores, and is preferred when there is visible soiling of the hands. Hand hygiene should be performed anytime health care personnel enter the 3-foot space around a patient because the immediate environment and equipment surrounding the patient can be readily contaminated. The Centers for Disease Control and Prevention (CDC) and the World Health Organization provide valuable guidance on effective hand hygiene practices.3,9

Hand hygiene adherence has been shown to be lower in settings with high patient activity, such as the ICU, and among physicians.10 Early studies of ED hand hygiene echo these trends.11-14 More recently, ED hand hygiene adherence rates have ranged from 10% to 90%.15-19 Variable adherence to hand hygiene in the ED has been attributed to lack of time, urgent clinical situations, and high patient workload. Lower hand hygiene adherence has also been associated with caring for patients in ED hallways, a marker for high ED visit volume and a surrogate for crowding.18

Much of the existing literature on hand hygiene implementation is composed of quasi-experimental studies. Interventions addressing ED hand hygiene practices have been

Table 1. Interventions to improve adherence to hand hygiene in emergency care.

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Country</th>
<th>N</th>
<th>Method of Observation</th>
<th>Intervention</th>
<th>Pre- → Postintervention Adherence, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsey et al, 1996</td>
<td>USA</td>
<td>252 HCP encounters</td>
<td>Direct</td>
<td>High-visibility signs Educational literature</td>
<td>Emergency physicians: 38 → 41 (<1 mo) (P=.83) Registered nurses: 50 → 63 (<1 mo) (P=.23) Nurse practitioners: 65 → 72 (<1 mo) (P=.42) Unspecified baseline → 35 (2 mo)</td>
</tr>
<tr>
<td>Larson et al, 2005</td>
<td>USA</td>
<td>Unspecified</td>
<td>Direct and electronic counters</td>
<td>Touch-free hand sanitizer dispenser</td>
<td>43 → 51 (3 mo) (P=NS)</td>
</tr>
<tr>
<td>Haas and Larson, 2008</td>
<td>USA</td>
<td>757 HCP encounters</td>
<td>Direct</td>
<td>Personal hand sanitizer dispenser Educational program Clinician champions Personal hand sanitizer dispenser</td>
<td>14.3 → 44.9 (6 mo) → 45.2 (1 y) (P<.001)</td>
</tr>
<tr>
<td>Saint et al, 2009; di Martino et al, 2011</td>
<td>Italy; USA</td>
<td>883 HCP encounters (6 mo); 456 HCP encounters (1 y)</td>
<td>Direct</td>
<td>Educational program Clinician champions Personal hand sanitizer dispenser</td>
<td>36 → 91 (10 mo) → >80 (3 y) (P=NR)</td>
</tr>
<tr>
<td>Schuur et al, 2011</td>
<td>USA</td>
<td>Unspecified</td>
<td>Direct</td>
<td>Educational program Clinician champions Increased access to hand sanitizer dispensers Regular HH performance reporting</td>
<td>21 → 45 (6 mo) (P<.001)</td>
</tr>
<tr>
<td>Scheithauer et al, 2013</td>
<td>Germany</td>
<td>5,674 HCP encounters</td>
<td>Direct</td>
<td>Multidisciplinary HH team Educational program Workflow optimization and standardization</td>
<td></td>
</tr>
</tbody>
</table>

USA, United States; HCP, health care personnel; NS, nonsignificant; HH, hand hygiene; NR, not reported.
met with differing success (Table 1). At the level of the individual provider, interventions have ranged from posting high-visibility signs promoting hand hygiene and circulating educational materials to staff to trialing touch-free and personal wearable hand sanitizer dispensers.14,20,21 Workflow optimization and standardization have also been examined as means of streamlining bedside procedures and reducing extraneous hand hygiene events in the course of patient care.22 Larger, multifaceted interventions incorporating group and one-on-one education, shared culture of patient safety, designated clinician champions to promote and model proper hand hygiene, improved access to alcohol-based hand rub, and routine hand hygiene monitoring through direct observation have led to sustained improvements in ED hand hygiene adherence.23-25 Immediate feedback about hand hygiene performance, as well as regular reporting and dissemination of health care personnel adherence rates, fosters accountability and provides concrete benchmarks by which improvement can be measured. These studies align with a consensus based on existing evidence that bundled interventions incorporating education, reminders, feedback, administrative support, and access to alcohol-based hand rub are our most effective means for improving hand hygiene adherence.26,27

Standard Precautions

ED health care personnel routinely come in contact with blood and other potentially infectious body fluids (eg, cerebrospinal, pleural, peritoneal, pericardial, synovial, and amniotic fluid) during patient care.28,29 Up to two thirds of procedures performed in the ED result in some form of health care personnel exposure to blood or other body fluid.30 Most exposures involve the hands. Exposures to the face are more likely to occur during tube thoracostomy, lumbar puncture, or examination of a hemorrhaging patient.

First introduced by the CDC in the 1980s because of the increasing epidemic of human immunodeficiency virus (HIV) infection, standard precautions mandate the use of barriers (eg, gloves, protective gowns, masks, eye wear) to protect health care personnel from blood-borne pathogens such as HIV, hepatitis B, and hepatitis C,31-33 as well as to prevent transmission of other infectious microorganisms. They are indicated when contact with blood or other body fluids, mucous membranes, nonintact skin, or potentially infectious material is anticipated. Face and eye protection are recommended for procedures and examinations in which splashes or sprays of blood or other body fluids are likely. Eye wear must consist of a face shield, goggles, or glasses with side shields to be considered protective. Standard precautions also encompass hand and respiratory hygiene, as well as the safe handling of potentially contaminated equipment and environmental surfaces.34 Previously referred to as universal precautions, standard precautions are one of the most extensively studied infection prevention strategies in emergency care.

Despite CDC guidelines and a mandate from the Occupational Safety and Health Administration since 1991,35 the day-to-day practice of standard precautions and use of personal protective equipment in the ED remains highly variable. Several studies performed in US academic medical centers have used either direct observation or video recording during trauma and medical resuscitations to measure adherence36-42 and have reported rates ranging from 38% to 89%. In some cases, health care personnel adherence to standard precautions improved if a patient was visibly bleeding.39,43 Yet other studies have demonstrated the opposite, underscoring how clinical urgency can compete with infection prevention practices in acute situations.37,40,44 During resuscitations, ED health care personnel are more likely to wear gloves than a gown, mask, or protective eye wear. The same holds true during nonemergency clinical encounters, despite the potential for exposure to blood and other body fluids.12,43,45,46 In surveys of ED health care personnel, commonly cited barriers to adherence to standard precautions have included lack of time, a perception that a patient is at low risk for being infected with HIV or another blood-borne pathogen, interference with dexterity and technical skills, and poor access to personal protective equipment at the bedside.37,51 In some cases, health care personnel also report uncertainty of which protective barriers to use and when, reflecting inadequate training or knowledge retention.52,53

Several intervention studies have sought to improve health care personnel adherence to standard precautions in the ED (Table 2).44,54-58 Educational programs have used in-service lectures, small-group discussions, and written materials highlighting the risks posed by blood-borne pathogens.54,56-58 One study also incorporated group review of a resuscitation video recording showing poor adherence to standard precautions.58 Visual cues at the patient bedside in the form of posters, along with verbal reminders from supervising staff, have helped to reinforce adherence.44,56,58 Bundling of supplies in designated supply carts or preorganized packs provides immediate access to personal protective equipment and facilitates their use in resuscitation settings.44,57 Adherence monitoring through “environmental safety” rounds59 or less formal means,50 accompanied by the threat of disciplinary action with repeated lapses in adherence, has likewise been shown to be effective. Although not studied as an intervention, notification and assembly of the trauma team in the resuscitation area before the arrival of a patient has also been associated with improved adherence to standard precautions.38

Given that exposure to blood and other body fluids during resuscitations and procedures is unpredictable, efforts to improve and sustain high levels of adherence to standard precautions must be a priority in the ED. Ready access to personal protective equipment, education, frequent reminders, and routine adherence monitoring can help reinforce the use of protective barriers in these high-risk situations. Glove use is not a substitute for hand hygiene because microscopic tears and skin contamination during glove removal can still result in the transmission of pathogens to the hands of health care personnel.39-61 Therefore, appropriate personal protective equipment use coupled with regular hand hygiene is necessary for standard precautions to be effective in protecting ED health care personnel.
Table 2. Interventions to improve adherence to standard precautions in emergency and trauma care.

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Country</th>
<th>Type</th>
<th>N (Pre- and Postintervention)</th>
<th>Method of Observation</th>
<th>Intervention</th>
<th>Pre- → Postintervention Adherence, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hammond et al, 1990</td>
<td>USA</td>
<td>Adult, trauma resuscitations</td>
<td>Pre: 81 resuscitations Post: 84 resuscitations</td>
<td>Direct</td>
<td>Universal precaution "packs" Verbal reminders at start of shift</td>
<td>Overall: 16 → 62 (2 mo) (P=NR)</td>
</tr>
<tr>
<td>Talan and Baraff, 1990</td>
<td>USA</td>
<td>Adult, noncritical</td>
<td>Pre: 97 vascular access Post: 115 vascular access Pre: 24 vascular access and pt care Post: 81 vascular access and pt care</td>
<td>Direct</td>
<td>Educational program</td>
<td>Gloves: 52.6 → 65.2 (10 mo) (P=.70)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adult, trauma resuscitations</td>
<td></td>
<td></td>
<td></td>
<td>Gowns: 25 → 39.5 (10 mo) (P=.20)</td>
</tr>
<tr>
<td>Kelen et al, 1990</td>
<td>USA</td>
<td>Adult, medical and trauma resuscitations</td>
<td>Pre: 1,274 interventions Post: 1,421 interventions</td>
<td>Direct</td>
<td>Mandatory policy Compliance monitoring Educational program Visual cues (eg, posters)</td>
<td>Less experienced HCP: Gloves: 70 → 93 (1 mo) → 97 (5 mo) (P=NR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pediatric, cases requiring vascular access</td>
<td></td>
<td></td>
<td></td>
<td>Experienced HCP: Gloves: 15 → 93 (1 mo) → 50 (5 mo) (P=NR)</td>
</tr>
<tr>
<td>Friedland et al, 1992</td>
<td>USA</td>
<td>Pediatric, cases requiring vascular access</td>
<td>Fixed cohort of 23 HCPs</td>
<td>Direct</td>
<td>Educational program Visual cues (eg, posters)</td>
<td>Gloves: 91 → 97 (10 mo) (P<.01)</td>
</tr>
<tr>
<td>Sadhev et al, 1994</td>
<td>USA</td>
<td>Adult, trauma resuscitations</td>
<td>Pre: 372 HCPs Post: 354 HCPs</td>
<td>Direct</td>
<td>Mandatory policy Educational program Designated universal precautions supply cart Compliance monitoring Educational program Visual cues (eg, posters)</td>
<td>Gowns: 24 → 82 (10 mo) (P<.01)</td>
</tr>
<tr>
<td>Brooks et al, 1999</td>
<td>South Africa</td>
<td>Adult, trauma resuscitations</td>
<td>Pre: 50 resuscitations Post: 50 resuscitations</td>
<td>Video recording</td>
<td>Educational program Visual cues (eg, posters)</td>
<td>Overall: 48 → 74 (1 mo) (P=.007)</td>
</tr>
</tbody>
</table>

NS, Nonsignificant; NR, not reported.
Transmission-Based Precautions

Communicable infectious diseases can be transmitted through airborne droplet nuclei, large particle droplets, or direct contact with patients and their immediate environment. Given that whether a patient is infected or colonized with a pathogen is seldom known at presentation, empiric transmission-based precautions are crucial to preventing the spread of infectious microorganisms in the ED.62

Airborne Precautions

Airborne droplet nuclei measuring less than or equal to 5 μm can remain infective and suspended in the air for hours, particularly in enclosed and poorly ventilated spaces. Airborne transmission of tuberculosis,63-65 measles,66,67 and severe acute respiratory distress syndrome68-70 has been described in ED settings. Varicella (including disseminated zoster), highly pathogenic influenza, and smallpox may also be transmitted in this manner. Rapid identification and isolation of ED patients suspected of harboring an airborne disease hinges greatly on heightened clinical suspicion, as in the case with tuberculosis.71 Screening tools and clinical decisionmaking instruments can help inform this process.72-73

Proper health care personnel protection against airborne droplet nuclei requires use of either an N95 or powered air-purifying respirator.74 In a survey of emergency medicine residents, self-reported adherence with respirator use during encounters with patients at risk for tuberculosis was low because of poor availability of masks and lack of appropriate fit testing.74 Likewise, during the severe acute respiratory distress syndrome epidemic, many health care personnel infections were associated with inadequate use of personal protective equipment, including respirators.75,76

Engineering controls aimed at mitigating or eliminating workplace hazards factor prominently in preventing airborne transmission of pathogens in the ED.62 Single-occupancy airborne infection isolation rooms equipped with special air handling and ventilation systems (capable of ≥12 air changes per hour) to generate negative room pressure have been associated with significant reductions in tuberculosis conversion rates among urban ED health care personnel caring for high-risk populations.77 Yet the availability of such isolation facilities varies among EDs.78 Increased respirator availability, education, and fit testing, combined with the construction, certification, and regular maintenance of airborne infection isolation rooms, are necessary measures to ensure the adequacy of ED airborne precautions.

Droplet Precautions

Unlike airborne droplet nuclei, large particle droplets measuring greater than 5 μm neither travel nor remain suspended in air for long periods. Droplet transmission occurs with seasonal influenza79 and meningococcal disease,80 both of which have been associated with transmission to and infection of ED health care personnel. Pathogens including Haemophilus influenzae, group A Streptococcus, Bordetella pertussis, and a host of other respiratory viruses are also transmitted by droplets. Donning a surgical mask as part of standard precautions provides sufficient droplet protection for health care personnel and is recommended when working within 3 feet of the patient.82 A more conservative radius for masking within 6 to 10 feet or on entering the patient’s room has also been suggested. Although a single-occupancy patient room is preferred, spatial distancing (≤3 feet) and separation of patient beds by curtains are also acceptable methods of droplet isolation. Patient cohorting during outbreaks and peak respiratory virus season has been shown feasible in the ED to limit transmission and increase surge capacity.81

When surveyed about patients presenting with influenza-like illness, emergency physicians and nurses report less than optimal adherence with surgical mask or glove use.82 As with airborne precautions, limited training and availability of respiratory personal protective equipment may be partly to blame. Lack of reminders about droplet precautions may also contribute. To this end, the electronic health record can be a useful tool for improving ED health care personnel adherence. Electronic notification of physicians and nurses about the need for droplet precautions when placing an order for influenza testing in the electronic health record can effect modest improvements in adherence.83 Some of the challenges with health care personnel adherence to airborne and droplet precautions may also tie into how respiratory personal protective equipment affects the therapeutic interaction between health care personnel and patients. Respirators and surgical masks form a highly visible physical barrier between the 2 that may not only interfere with clear communication but also promote social distancing and isolation, further compounded when physical isolation of the patient is necessary. How much this actually influences health care personnel adherence to airborne and droplet precautions has not been well studied.

Respiratory hygiene has emerged as a comprehensive approach to curbing transmission of respiratory infections in ED settings through direct engagement and empowerment of patients.84 Signs describing appropriate cough etiquette, improved access to hand hygiene supplies, masking and separation of ED patients presenting with respiratory symptoms, and health care personnel adherence to droplet precautions compose this multifaceted approach.82 In one study, adherence with self-masking remained low among patients presenting to the ED with cough, although many agreed that masks and hand hygiene were effective methods for preventing transmission of respiratory infections.85 More studies are needed to identify successful strategies for implementing and sustaining respiratory hygiene practices among health care personnel and patients in the ED.

Contact Precautions

EDs frequently care for patients infected or colonized with multidrug-resistant organisms, including methicillin-resistant S aureus (MRSA),87-91 vancomycin-resistant Enterococcus,87,91 and an increasing number of multidrug-resistant Gram-negative bacteria (eg, Acinetobacter baumannii, Pseudomonas aeruginosa, and various Enterobacteriaceae).92 Clostridium difficile93,94 and other enteric pathogens95 are likewise commonly encountered in patients with diarrheal illness. Transmission of these pathogens...
and others, including severe acute respiratory distress syndrome and highly pathogenic influenza, can occur through direct contact with patients or their immediate surroundings. Contact precautions entail the use of protective gowns and gloves during patient care to prevent health care personnel acquisition and transmission of these pathogens to other patients. With the exception of patients presenting with diarrhea or bowel incontinence, the decision to initiate contact precautions in the ED can be difficult. Policies guiding their use vary widely among EDs. Many hospital electronic health records now automatically flag established patients with a history of multidrug-resistant organism infection or colonization, allowing ED health care personnel to identify them and initiate contact precautions early on in their care. Others have implemented selective screening for multidrug-resistant organisms and empiric use of contact precautions for any patient coming from a nursing home or long-term care facility. The extent of health care personnel adherence to contact precautions once the need has been identified is not yet known.

Health Care Personnel Immunization

Immunization is an important strategy for protecting ED health care personnel against vaccine-preventable diseases, including hepatitis B, measles, mumps, rubella, pertussis, varicella, and seasonal influenza. Historically, influenza vaccination rates have been low among ED health care personnel. Although influenza vaccination does not replace the practice of hand hygiene or droplet precautions, it can be effective in preventing infection if the vaccine is well matched to prevalent strains circulating in the community. Annual influenza vaccination is widely encouraged for all persons aged 6 months and older with no medical contraindications. More research is needed to identify how education, increased vaccine availability, and employment conditional on immunity can improve vaccination rates among ED health care personnel.

Environmental Controls

Opportunities abound for contamination of environmental surfaces and medical equipment in the ED. Patients colonized or infected with multidrug-resistant organisms, including MRSA, can transfer microorganisms to their gowns, linens, guard rails, overbed tables, blood pressure cuffs, the floor, and many other sites in their immediate vicinity. Environmental contamination with multidrug-resistant organisms contributes significantly to the contamination of health care personnel’s hands during patient care. Patients can also acquire multidrug-resistant organisms when hospitalized in a room previously occupied by a multidrug-resistant organism-colonized patient where environmental contamination has occurred.

The CDC provides comprehensive guidelines on disinfection and sterilization in health care settings that readily apply to the ED. Noncritical equipment (e.g., blood pressure cuffs) and environmental surfaces (e.g., bed rails, patient furniture, floors), defined as those that primarily come into contact with intact patient skin, should receive low-level disinfection between patients. Limited evidence supports that, with adequate routine environmental cleaning, the risk of persistent contamination of high-touch patient care objects (e.g., chairs, gurneys, examination tables, curtains) in the ED is minimal. Studies addressing how effective environmental cleaning and disinfection practices can be implemented and reliably maintained in the ED while permitting rapid turnover of patient rooms would be greatly beneficial.

MRSA has also been isolated from communal objects in the ED that may escape regular disinfection, including computer keyboards, telephones, and door keypads. Provider stethoscopes are frequently contaminated. Whether these objects contribute to transmission of multidrug-resistant organisms in the ED is not clear, but it would seem prudent to incorporate their routine disinfection into environmental cleaning and disinfection practices.

HEALTH CARE-ASSOCIATED INFECTIONS IN EMERGENCY SETTINGS

We have thus far discussed ED infection prevention in the context of caring for patients presenting with communicable infectious diseases and disrupting pathogen transmission. It is equally important to turn our attention to how we can protect patients from acquiring new infections as a result of receiving emergency care. One in 20 Americans will develop a health care–associated infection in the course of a hospitalization. Across the United States, such infections claim almost 100,000 lives annually. Although the burden of health care–associated infections directly attributable to ED care is unknown, the ED is a setting in which invasive procedures are frequently performed and place patients at risk for device-related infections. We will examine what interventions have been explored in the ED environment to prevent health care–associated infections (Table 3).

Central Line-Associated Bloodstream Infection

Central venous catheters are inserted for many emergency indications in the ED, including volume resuscitation in trauma, early goal-directed therapy in sepsis, and when peripheral vascular access is not possible. Central line–associated bloodstream infections (CLABSIs) extend ICU and hospital length of stay, and account for anywhere between $296 million and $2 billion in annual spending. CLABSIs can also increase attributable mortality by up to 30%. Studies examining outcomes of ED central venous catheters have focused more on acute mechanical complications than CLABSI, most likely because of inadequate surveillance mechanisms for tracking outcomes. Before 2010, ED CLABSI studies suffered from imprecise definitions and lacked sufficient power. Reported CLABSI rates for ED central venous catheters varied from 0 to 24.1 CLABSIs per 1,000 catheter-days, depending on patient population and anatomic factors such as insertion site.
Table 3. Interventions to reduce infection related to medical devices use in emergency care.

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Country</th>
<th>Target Intervention</th>
<th>Pre- → Postintervention Outcomes, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing peripheral intravenous catheter infection</td>
<td>Fakih et al, 2012(^{152}) USA</td>
<td>Improve aseptic technique during catheter insertion</td>
<td>Educational program: Direct observation of catheter insertion, Direct feedback on performance</td>
</tr>
<tr>
<td>Preventing CAUTI</td>
<td>Gokula et al, 2007(^{153}) USA</td>
<td>Reduction of catheter use</td>
<td>Educational program: Indication checklist, Educational program: Guideline establishment, Educational program: Catheter prevention checklist</td>
</tr>
<tr>
<td></td>
<td>Fakih et al, 2010(^{154}) USA</td>
<td>Prevention of VAP</td>
<td>Educational program: Early catheter removal, Catheter prevalence monitoring</td>
</tr>
<tr>
<td></td>
<td>Dyc et al, 2011(^{155}) USA</td>
<td>Improvement of aseptic technique during central venous catheter insertion</td>
<td>Educational program: Indication checklist, Educational program: Guideline establishment, Educational program: Catheter prevention checklist</td>
</tr>
<tr>
<td></td>
<td>Fakih et al, 2012(^{158}) USA</td>
<td>Prevention of VAP</td>
<td>Educational program: Early catheter removal, Catheter prevalence monitoring</td>
</tr>
<tr>
<td></td>
<td>McCoy et al, 2012(^{171}) USA</td>
<td>Aspiration prevention (suctioning, elevating the head of bed), oral hygiene</td>
<td>Educational program: Compliance monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VAP: 6 → 1 case (6 mo) (P=.06)</td>
</tr>
</tbody>
</table>

CAUTI, Catheter-associated urinary tract infection; VAP, Ventilator-associated pneumonia.

studies precludes pooling of their results.\(^{126}\) Since 2010, only 1 study has described the incidence of CLABSI attributed to the ED and found that, in an academic medical center, ED CLABSI rates were similar to that of the ICU.\(^{131}\) Relying primarily on administrative databases of ED patients admitted to the ICU, the rate of ED CLABSI was 1.93 per 1,000 catheter-days (95% confidence interval 0.50 to 3.36). The generalizability of this finding remains untested.

Historically, ED CLABSI studies have focused on aseptic technique during central venous catheter insertion. Video-based assessments have reported health care personnel adherence ranging from 33% to 88%, with lower rates among senior physicians.\(^{132,133}\) Simulation-based training improves adherence to aseptic technique and has been associated with a reduction in CLABSI rates.\(^{134}\) Successful strategies to prevent CLABSI in the ICU revolve around comprehensive bundles incorporating education, hand hygiene, use of maximal sterile barrier precautions (surgical gown, sterile gloves, mask, cap, and large sheet drape), chlorhexidine-alcohol skin antisepsis, and avoidance of the femoral vein because of the high infection rate associated with central venous catheter insertion at this site.\(^{135,136}\) Standardized central venous catheter kits and equipment carts provide easy access to supplies needed to conform to these practices. Universal central venous catheter insertion checklists provide cues for each of the components and facilitate documentation of adherence to CLABSI prevention measures during the procedure. An observer is designated to review the checklist, monitor aseptic technique, and terminate the procedure should a protocol violation occur. Such systems-based prevention strategies have significantly reduced CLABSI rates in ICUs.\(^{137,138}\) Among EDs that have adopted this approach to central venous catheter insertion, successful bundle implementation has been tied to recruitment of clinician champions, staff engagement, clear staff responsibilities, workflow redesign, observer empowerment, and feedback through adherence and CLABSI surveillance data.\(^{139}\) As yet, there are no published data on the effects of the checklist and bundle approach on ED CLABSI rates, to our knowledge. Formal surveillance of central venous catheters placed in the ED remains a challenge. The effect of early discontinuation of ED central venous catheters once they are no longer needed on ED CLABSI rates has not been evaluated.\(^{126}\)

Peripheral venous catheters are a mainstay of medical therapy in the ED. Although peripheral venous catheter infections are uncommon, bloodstream infection\(^{140,141}\) and even septic thrombophlebitis may occur in rare instances. At one academic institution, the estimated incidence of peripheral venous catheter–related S. aureus bacteremia was 0.07 per 1,000 peripheral venous catheter-days, with more than half of all infected peripheral venous catheters originating in the ED.\(^{141}\) Overall adherence to aseptic technique during peripheral venous catheter insertion and line care during infusions have been shown to be poor in the ED.\(^{142}\) Educational programs paired with direct observation during insertions and feedback on performance can improve adherence and reduce infections associated with peripheral venous catheters.\(^{142}\) Avoidance of unnecessary ED peripheral venous catheters may also reduce infection rates, although this has not been formally studied. For patients with difficult vascular access, ultrasonographically guided peripheral...
venous catheters have emerged as an alternative to central venous catheters in noncritically ill patients. With proper aseptic technique, infection rates associated with ultrasonographically guided peripheral venous catheters do not differ significantly from that of traditional peripheral venous catheters.

Catheter-Associated Urinary Tract Infection

Urinary catheters are commonly used in the ED to manage acute urinary retention, bladder outlet obstruction, or hematuria associated with clots, as well as to monitor urine output in critically ill patients. Left in place for prolonged periods, they can become colonized with bacteria, leading to catheter-associated urinary tract infection and sepsis. It is estimated that anywhere from 65% to 70% of catheter-associated urinary tract infections are preventable. Several guidelines summarize evidence-based strategies for preventing such infection in acute care settings.

Although urinary catheters play an important role in medical care, inappropriate use of them is common in ED and inpatient settings, particularly among elderly patients. Although lack of medical documentation for a urinary catheter has been construed as inappropriate use in many studies, nonindications for catheter use among elderly patients in the ED have also included urine specimen collection, dementia, incontinence, patient request, immobility, and the need for output monitoring outside of the ICU. At one hospital, 73% of patients undergoing urinary catheter insertion in the ED were aged 65 years or older. In this group of 277 elderly catheterized patients, 24 developed catheter-associated urinary tract infections (8.7%), of which 11 (4%) were attributed to inappropriate urinary catheter use.

Several quasi-experimental studies have fielded strategies to reduce inappropriate use of urinary catheters in the ED. The introduction of an educational program targeting emergency physicians and nurses and mandatory completion of a checklist of acceptable indications for urinary catheters before insertion resulted in an almost 80% reduction in ED catheter insertions. At the same time, appropriate use of catheters increased from 37% to 51% (P=.06); physician order documentation, from 43% to 63% (P<.01). Another study also reported significant reductions in catheter use after guidelines were established for catheter insertion and reinforced by an educational program consisting of lectures and distribution of pocket cards listing appropriate indications. Efforts to reduce catheter use among resident physicians by using an educational intervention have been less successful. Other efforts have sought to improve procedural knowledge and technique among ED nurses and other staff directly involved in catheter insertion. Outside the ED, multidisciplinary strategies promoting guidelines for appropriate indications for ED catheter placement, a nurse-driven protocol for early catheter removal, and routine monitoring of inpatient urinary catheter prevalence rates have led to sustained hospital-wide reductions in catheter use that have been replicated on a population scale.

Ventilator-Associated Pneumonia

Emergency intubation is often necessary for ED patients presenting with respiratory failure either from impaired ventilation or oxygenation, or to protect a patient’s airway in the setting of trauma or other critical illness. Defined as pneumonia acquired in the hospital after more than 48 hours of mechanical ventilation that was not present at intubation, ventilator-associated pneumonia carries significant morbidity and variable mortality. Several studies have shown that trauma patients requiring intubation in the ED or out-of-hospital setting may be predisposed to ventilator-associated pneumonia for a variety of reasons, ranging from injury severity, hemodynamic instability, and depressed mental status to suboptimal intubation conditions resulting in aspiration. Increased ED length of stay has also been identified as an independent risk factor for pneumonia in urgently intubated trauma patients.

With at least half of all cases of ventilator-associated pneumonia considered preventable, several guidelines exist outlining simple and low-cost strategies to minimize aspiration of secretions, reduce colonization of the patient’s respiratory tract with pathogenic bacteria, and prevent contamination of mechanical ventilation equipment. Studies have demonstrated that multifaceted interventions based on these guidelines may be associated with reductions in ventilator-associated pneumonia rates, although controversy still exists. Nursing interventions, including routine suctioning above the endotracheal cuff, elevating the head of the bed at least 30 degrees, and providing oral hygiene with 1.5% hydrogen peroxide solution, can be readily implemented in the ED with appropriate education, testing, and adherence monitoring. Limiting the duration of mechanical ventilation in carefully selected ED patients through early extubation has been shown to be safe, although the effect on ventilator-associated pneumonia rates has not yet been studied.

Other Medical Devices

The growing use of bedside ultrasonography in emergency care has greatly enhanced our ability to rapidly identify life-threatening conditions and safely perform invasive procedures such as central venous catheter insertion. Ultrasonography is also used to evaluate skin and soft infections for abscesses amenable to incision and drainage. At one academic institution, clinically significant pathogens, including MRSA, were identified in 70% of cultures obtained from ED ultrasonographic probes immediately after use in a convenience sample of patients presenting with skin and soft infections. With appropriate disinfection practices using antimicrobial wipes, contamination of ultrasonographic probes with MRSA remains uncommon.

Transvaginal ultrasonography has been used in the ED to evaluate complaints of vaginal bleeding and pelvic pain, as well as to diagnose early intrauterine pregnancy. In one study, human papillomavirus contamination of transvaginal, or endocavitary, probes using polymerase chain reaction was identified in 7.5% of surveillance samples. More concerning, the virus was...
identified on 21% of probes used to evaluate known human papillomavirus carriers, despite use of a probe cover and low-level disinfection. Endocavity probes are considered semicritical items because they contact mucous membranes and therefore require high-level disinfection between patient use.110 Appropriate ED decontamination guidelines and practices are necessary to prevent bedside ultrasonographic machines from becoming a vector for pathogens.

FUTURE DIRECTIONS

Ample opportunities exist to improve infection prevention in the ED through the implementation and optimization of best practices and through future research (Table 4). Current efforts should be prioritized toward areas that have shown the most sustainable changes. Although essential to increasing health care personnel knowledge about established infection prevention practices, education alone does not maintain high levels of adherence. Policies and guidelines will not have an effect unless they are observed.177 Obstacles to ED infection prevention need to be understood, addressed, and overcome. Readily accessible personal protective equipment, alcohol-based hand rub dispensers, and other critical infection prevention supplies increase the likelihood that health care personnel will routinely use them in the course of patient care. Frequent reminders and feedback reinforce education and prompt health care personnel to perform key infection prevention practices at the bedside, where competing clinical demands are high. Open communication among health care personnel about breaches in these practices foster accountability, trust, and a team mentality. Checklists and bundles ease our dependence on memory alone to complete complex tasks and promote high-reliability care. Formal adherence monitoring and health care–associated infection surveillance provide concrete metrics by which performance improvement can be measured and relayed to health care personnel. Finally, commitment and support from ED clinical and administrative leaders seal the foundation for a shared culture of safety. In this environment, ED infection prevention becomes both an organizational and an individual responsibility. Although fewer studies have targeted infection prevention practices in the ED than in other health care settings, there is evidence that this comprehensive, multifaceted approach can be successful.

The feasibility of many infection prevention strategies will vary from ED to ED, depending on the resources and support that each can leverage. Hospital infection prevention committees...
can provide invaluable expertise and assistance in deciding which strategies to implement and how the ED can best contribute to hospital-wide initiatives. ED representation on these committees is strongly encouraged. As many hospitals transition to electronic documentation and computerized provider order entry, the electronic health record can serve as a powerful tool for implementing infection prevention strategies. Adherence to transmission-based precautions can be enhanced through automated health care personnel notifications and alerts. Bundled interventions to prevent CLABSI, catheter-associated urinary tract infection, and ventilator-associated pneumonia can be directed through standardized electronic order sets. Innovations in automated technology to track the performance of hand hygiene and other infection prevention practices could soon replace the need for time-consuming direct observations, making it easier to measure adherence throughout the ED. Involvement of ED health care personnel and infection prevention specialists in the planning and design of future EDs can also greatly enhance the feasibility of many basic practices and ensure that sufficient engineering controls are incorporated (eg, single-patient rooms, airborne infection isolation rooms). Optimization of the built environment may not only minimize environmental contamination but also facilitate cleaning and disinfection of hospital surfaces in the ED.

Many questions in infection prevention in the ED remain to be answered. Advances in molecular diagnostics are revolutionizing the way providers screen for and diagnose infectious diseases. The ability to rapidly identify ED patients infected with tuberculosis, seasonal influenza, or a multidrug-resistant organism, such as MRSA, could lead to earlier treatment. The ED plays an important part in the care of patients infected or colonized with multidrug-resistant organisms or expediting their admission to an ICU or transferred from another care facility or a nursing home. In hospitals with a high prevalence of multidrug-resistant organisms, the ED could play a role in active surveillance, although the costs, benefits, and implications of ED-based surveillance have yet to be studied. Admitted patients needing contact isolation often wait longer in the ED until a suitable hospital room is available, which can contribute to crowding and even enhanced multidrug-resistant organism transmission if infection prevention practices are not well adhered to. Strategies such as cohorting patients with multidrug-resistant organisms or expediting their admission to an inpatient bed need to be explored. What constitutes expedient yet effective terminal cleaning of the ED environment after the care of patients infected or colonized with multidrug-resistant organisms or *C difficile* has to be defined and must be realistic to sustain patient throughput.

Although the role of the ED in preventing health care–associated infections will likely continue to expand, more accurate surveillance systems are necessary to determine the true percentage of CLABSI, catheter-associated urinary tract infections, and ventilator-associated pneumonias that are directly attributable to ED care. Novel methods to maintain aseptic technique during invasive ED procedures are needed, particularly in resuscitations. The effect of new technologies, such as antibiotic-impregnated catheters, requires validation in chaotic and time-sensitive settings such as the ED. Aggressive strategies to prevent health care–associated infections, including universal decolonization, may be worth examining in at-risk ED patients, particularly in areas in which the prevalence of MRSA is high.

Antimicrobial stewardship encompasses the appropriate selection, dosing, route of administration, and duration of antimicrobial therapy to improve patient outcomes, reduce antimicrobial resistance, and prevent transmission of multidrug-resistant organisms. The ED plays an important part in the responsible use of antimicrobial agents and preventing *C difficile* infection through such stewardship. The development of new ED-based decision support tools could optimize antibiotic prescribing and eliminate unnecessary antibiotic use, particularly in patients who do not need to be admitted to the hospital.

In conclusion, the innovation and implementation of safe, practical, and effective infection prevention strategies tailored specifically to the ED is fertile grounds for future research and will have a lasting influence on patient safety in emergency care.

Supervising editor: David A. Talan, MD

Author affiliations: From the Division of Emergency Medicine (Liang, Theodoro) and the Division of Infectious Diseases, Department of Medicine (Liang, Marschall), Washington University School of Medicine, St. Louis, MO; and the Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA (Schuur).

Funding and support: By *Annals* policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org). The authors have stated that no such relationships exist and provided the following details: Dr. Liang received support from grant KM1CA156708 through the National Cancer Institute at the National Institutes of Health (NIH), grant UL1RR024992 through the Clinical and Translational Science Award (CTSA) program of the National Center for Advancing Translational Sciences (NCATS), and the Barnes-Jewish Patient Safety & Quality Career Development Program, which is funded by the Foundation for Barnes-Jewish Hospital. Dr. Theodoro received support from grant K08 HS18092 at the Agency for Healthcare Research and Quality (AHRQ). Dr. Schuur received support from grants R13HS021616 and R18HS020013 from the AHRQ. Dr. Marshall received support from grants KL2RR024994 and UL1RR024992 through the CTSA/NCATS, grant 5K12HD001459-13 through the NIH Office of Research for Women’s Health, grant U54 CK000162 as part of the Centers for Disease Control and Prevention (CDC) Epicenters Program, and the Barnes-Jewish Patient Safety & Quality Career Development Program.
REFERENCES

60. Hayden MK, Blom DW, Lyke EA, et al. Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant enterococcus or the colonized patients’ environment. Infect Control Hosp Epidemiol. 2008;29:149-154.

79. Santos CD, Bristow RB, Vorenkamp JV. Which health care workers were most affected during the spring 2009 H1N1 pandemic? Disaster Med Public Health Prep. 2010;4:47-54.

