Drug Interactions and Polypharmacy

Nataliya Sidelnikova, PharmD
PGY1 Pharmacy Resident
Objectives

- Discuss etiology of various adverse drug reactions
- Define polypharmacy
- Discuss risks of polypharmacy in the elderly
- Identify risks for polypharmacy
- Review the principles of the BEERS list
- Identify ways to prevent and manage polypharmacy
Definition of drug interaction

- Chemical or physiological reaction that can occur when two different drugs are taken together
 - Drug-drug
 - Drug-diet
 - Drug-endogenous chemical
 - Drug-test
Epidemiology

• Adverse drug reactions secondary to drug interactions are estimated to be 6-22%

• Patient populations at highest risk
 – Geriatric
 – Critical Care
 – Complicated surgical patients
Outcomes of drug interactions

- Disease progression
- Increased monitoring
- Increased length of stay and healthcare cost
- Decreased productivity and lost wages
- Decreased patient and family satisfaction
- Injury
- Death
Patient Risk Factors

- **Multiple disease states**
 - Cardiac disorders
 - Diabetes
 - Psychiatric disorders
- **Renal or hepatic diseases**
- **Multiple prescribers**
- **Multiple pharmacies**
- **Polypharmacy**
Patient Risk Factors

• Drugs associated with interactions
 – Anticoagulants
 – Antiepileptic
 – Antipsychotics
 – Antibiotics
 – Endocrine agents
 – Antiarrythmics
Pharmacodynamic drug interactions

- What the drug does to the body
- Alterations in the end-organ response to a drug
 - Change in receptor binding
 - Decrease in receptor number
 - Altered response to a receptor
- Synergism
 - Effect more than sum of two drugs alone
- Antagonism
 - Effect less than sum of the two drugs
 - Competitive
 - Noncompetitive
Pharmacokinetic drug interactions

• Increase in receptor response in elderly
 – Benzodiazepines
 – Warfarin
 – Opiates

• Some organs have increased response to drug
 – CNS
 – Bowel
 – Bladder
 – Heart
Pharmacokinetic Drug Interactions

• What the body does to the drug
 – Absorption
 – Distribution
 – Metabolism
 – Excretion

• Mediators
 – Stomach and small intestine absorption
 – Protein binding
 – Liver metabolism
 – Renal function
Pharmacokinetic drug interactions

• Absorption
 – Changes in GI motility
 » Increased: reduced absorption
 » Decreased: increased degradation
 – Changes in pH
 » Some drug require a specific pH to be activated or absorbed appropriately
 – Chelation
 » Irreversible binding of the drug
 » Separate administration of drugs by at least 2 hours
Pharmacokinetic drug interactions

- Antacids can decrease absorption:
 - Phenytoin
 - Quinolones
 - Ketoconazole
 - Iron

- Drugs that alter GI motility
 - Anticholinergics
 - Ant diarrheal medications
 - Laxatives
Pharmacokinetic Drug Interactions

- **Distribution**
 - Effects transport of a drug to desired destination
 - Volume of distribution
 - Protein binding
 - Drug solubility
 - All these factors can be altered with age
 - Decrease in body water composition
 - Decrease in plasma protein concentration
 - Increase in adipose tissue
Pharmacokinetic drug interactions

- Decrease in plasma protein concentration
 - Increased amount of free (active) drug in body
 » Highly protein bound drugs (warfarin, phenytoin)

- Decrease in total body water → decreased Vd of water soluble drugs
 - Increased serum concentration

- Increase in adipose tissue → larger Vd for lipid soluble drugs
 - Prolongs the half-life of drug
 - Important for drugs that affect the CNS
 » Barbiturates and benzodiazepines
Pharmacokinetic Drug Interactions

- Metabolism
 - 2 major ways of metabolism
 » Phase 1
 - P-450 enzyme system
 » Major source of drug interactions
 » Declines with age
 - Can result in active metabolites
 » Phase 2
 - Conjugation
 » Acetylation
 » Glucuronidation
 » Sulfation
Pharmacokinetic Drug Interactions

• Excretion
 – Determined by renal function
 » Renal function decreases with age
 » Use creatinine clearance to determine renal function
 – Adjust dosing based on clearance
 – Creatinine Clearance (Cockcroft-Gault Equation)
 » \((140 - \text{Age}) \times \text{Wt (kg)} \times 0.85 \) (for females)
 » \((72 \times \text{Scr}) \)
 » Be careful of falsely elevated clearance!
Drug interactions

• Pharmacodynamics and pharmacokinetics change as a person ages
 – Longer duration of activity of a drug
 – A greater or lesser drug effect
 – An increase in adverse drug reactions
Polypharmacy

- Many definitions
 - Greater than or equal to 5 drugs
 - Use of multiple medications
 - Use of at least one potentially inappropriate drug
 - Underutilization of drugs
Polypharmacy

- Risks for polypharmacy include:
 - Increasing age
 - Chronic disease states
 - CAD, Stroke, CHF, DM, COPD
 - Multiple prescribers
 - Multiple office visits
 - Long-term care resident
Polypharmacy prevalence

- **Direct correlation between age of patient and number of medications taken daily**
 - > 90% of older adults take at least one prescription daily
 - Most take two or more prescriptions daily
- **Long term care residents**
 - Three or more medications are taken daily by 2/3 of the residents
 - Seven different medications per patient per day on average
 - 2/3 of nursing home residents will experience an ADR over 4 years
 - 1:7 results in hospitalization
- **Hospitalized older adults**
 - 10-17% of hospital admissions in the older adult are related to an ADE
 - Patients receive 8 different medications per hospitalization on average
 - 19% of major complications in the hospital are related to medications
Polypharmacy

- Risks of polypharmacy include:
 - Medication interactions
 - Medication non-adherence
 - Cognitive impairment
 - Falls
 - Sedation
 - Hospitalizations
 - Adverse drug events
 - Death
Managing polypharmacy

- Have a clear indication to prescribe new drugs
- Carefully weigh the risks vs. benefit
- Start low, go slow
- Make only one change at a time if possible
- Inquire about the use of OTC and alternative medications
- Review the patient’s list of medications
- Monitor renal function
- Simplify medication schedules
 - Combination medication
 - Once daily dosing
 - One drug with multiple indications
 - Look for drugs that are being used to prevent adverse effects of other drug
Beers Criteria

- Developed in 1991 for SNFs
- Expanded to all settings in 1997
 - Updated in 2003 and 2012
- 11-member expert panel:
 - Geriatricians
 - Nurses
 - Pharmacists
 - Research and quality measure experts
- Medications categorized by:
 - Organ system or therapeutic category
 - Disease or syndrome
Summary

- Polypharmacy will continue to be a concern as our population ages.
- Polypharmacy increases the risks of adverse drug reactions.
- Polypharmacy can be part of the optimal treatment of medical conditions:
 - Monitor
 - Alter regimens as needed
 - Treat the patient, not the value!
References

Questions?