CHEST PAIN IN THE ED

Vicki Keough, PhD, RN, ACNP MSN 434 Common Problems in the Emergency Nursing

Epidemiology

- Chest Pain (CP) represents 5% if the ED Visits
 - Approx 5 million visits/year
 - 40% of admissions
- Acute MI(AMI) leading cause of death in the US
- Error in diagnosis of CP accounts for approx 20% medical malpractice

Why the misdiagnosis?

- CP is often the result of referred pain from other organs
- Diagnosis must be based on history and physical exam
- CP always respresnts a possible cardiac event
- Often Laboratory tests to r/o MI are not helpful in the ED.

What's included in your differential?

- The BIG SIX (6 most serious dx from CP)
 - Unstable Angina (Acute Coronary Synd)
 - Acute MI (Acute Coronary Synd)
 - Aortic Dissection
 - Pulmonary Embolus
 - Spontaneous Pneumothorax
 - Boerhaave's Syndrome

Acute Coronary Syndrome

- Acute Chest Pain due to myocardial ischemia
- Initial assessment is difficult to differentiate b/w acute MI and Unstable Angina
- Typical ED pop with c/o acute chest pain
 - 15% will have acute MI
 - 25-30% will have Unstable Angina

History

- Evaluating of Current complaint:
 - Pain location, duration, quality, severity
 - Radiation
 - Relief/Exacerabation
 - Associated Symptoms
 - Trauma

PMH

- Other cardiac history
- Previous admissions
- Previous test results (i.e. EKG, Treadmills, MUGA, Echo, CXR)
- Rx History

Risk Factors for MI

- Absolute Risk Factors
 - Family History
 - HTN
 - DM
 - Smoking
 - Elevated Cholesterol
- Contributory
 - Age over 30
 - Male
 - Obesity
 - Sedentary life style
 - Cocaine use

Risk Factors for Pulmonary Embolus

- Immobilization
 - Paralysis
 - Paresis
 - Plaster
 - Plane
- Recent Surgery
- Trauma
- Obesity
- Cardiac Disease
- Burns
- History of PE or DVT
- Hypercoaguable states
 - Pregnancy
 - Protein C/S deficiency
 - AT III Deficiency
 - Malignancy
 - Estrogen therapy
- Cancer

Risk Factors: Aortic Dissection

- HPTN (95% of pts with dissection)
- Predisposing Conditions
 - Marfan's
 - Ehlers-Danlos syndrome
 - Turner's syndrome
 - Coarctation of Aorta
 - Pregnancy
 - Trauma

Risk Factors: Esophageal Pain

- Sensitivity to gastric acid
- Disorders of motility
- Reflux
- Spasm
- Achalasia
- Approx 20% pts admitted for CP actually have esophageal pain
- Hiatal Hernia is present in about 50% of pts over 50

Physical Exam

Look for signs of cardiac cause:

TAchypnea

Tachycardia

Diaphoresis

Cyanosis

Pallor

Obtain BP in both arms

Reproducible pain

General Appearance

Physical Findings: Angina

Angina

- Episodic, lasting 5-15 min
- Indoced by exertion
- Relieved in 3-5 min with rest or SL NTG
- CP
 - REtrosternal in 90% of pts
 - Radiates to neck, shoulder or arms in 70%

Unstable Angina

- Pain at rest or minimal activity
- Pain prolonged or more severe
- Pain occurring with increased frequency

Physical Findings: MI

- Pain longer than 15-30 minutes, progressive
- Dull or pressure-like pain in the midsternal or peristernal
- Associated symptoms
 - Nausea, vomiting, dyspnea, SOB, Diaphoresis, lightheaded ness
- New Murmur: Papillary muscle dysfunction
- Extrasystolic sound-Very difficult to illicit in ED setting
- ST seg Elevation in 2 contiguous leads (80% MI) or New ST depression and T wave inversion (20% MI)

Physical Findings: MI

- Beware of five causes of silent MI or atypical presentations
 - D: Diabetes
 - E: Elderly
 - A: Alcohol
 - T: Trauma to thoracic spinal cord
 - H: Hypertension

Physical Finding: Pulmonary Embolism

- 3rd most common cause of death in US
- Decreased Pa02
- DVT
 - 25-50% of DVTs have PEs
- Clinical S&S
 - CP
 - Dyspnea (84%)
 - Cough (53%)
 - Tachypnea (92%)
 - Tachycardia (44%)
- Elevated A-a gradient
 - 140- {PO2 + 1.2(PCO2)}= A-a gradient
 - A-a gradient of 10-20 is healthy
- Non-specific T-wave changes

Physical Finding: Aortic Disscection

- Hypertension and Tachycardia
 - Hypotension can occur in dissection of ascending aorta
- Abnormal aortic contour on CXR 90%
- Decreased/Unequal pulses:
 - Radial
 - Femoral
 - Carotid arteries
- Paraplegia/Neurologic presentation (40%)
- C/O Tearing chest pain, worst at onset
- Widened mediastinum on CXR
- Usually males, between 50-70 years old

Physical Findings: Spontaneous Pneumothorax

- Acute onset of pleuritic chest pain
- Dyspnea and tachypnea
- Decreased BS on side of pneumo
- If Tension Pneumo:
 - -JVD
 - Hypotension
 - Initially normal heart sounds

Physical Findings: Esophageal Rupture

- Boerhaave Syndrome (esophageal rupture)
- Sudden onset of sudden, sharp substernal CP occurring immediately after an apisode of forceful vomiting
- Ill appearance, diaphoretic, dyspneic
- Physical exam may be normal
- CXR normal or pleural effusion, penumothorax, sub-Q air
- Confirm dx with water soluble contrast study

Initial Treatment

- Pts with CP need to be immediately diagnosed for the big 6!
- ABCs
 - Oxygen
 - Monitor
 - IVs
 - -VS

Initial TX: Unstable Angina/MI

- ABCs
- CXR
- EKG
- Cardiac Enzymes
 - LDH will rise 12-24 hrs
 - CKMB rises in 4-8 hrs after onset of symptoms and peaks in 24 hours, clears in 48 hours
 - Myoglobin: rise within 3 hours of onset of symtpoms, abnormally elevated at 6-8 hours and peak at 4-9 hours
 - Troponin I and T: Elevate 6 hours after injury, peak in 12 hours and remain elevated for 7-10 days.
 - Other markers evaluated: BNP (Cardiac Function), C-reactive protein (inflammation), P-selection (platelet activation)

Initial Tx: Aortic Dissection

- ABCs
- CXR
- Arteriogram

Initial Tx: PE

- ABCs
- CXR
- ABG
- VQ scan and or/arteriogram

Initial Tx: Pneumothorax

- ABCs
- If stable: CXR
- If unstable: chest tube

Initial Tx: Boerhaave's Syndrome

- ABCs
- CXR
- Gastrograffin swallow

Esophageal Pain

- Usually presents 15-60 min after eating
- Described as heartburn, odynophagia, spasm-like
- NTG and GI cocktail often relieve pain
- Impossible to distinguish between esophageal and cardiac pain

Musculoskeletal pain

- Pain lasts few seconds to hours
- Positional and tender
- Pain my be prepositional upon palpation

Cardiac Work-up

- History alone cannot be used to rule out acute ischemia
- Pts must be classified according to risk for ischemia
 - Classify the pt into a I-V Risk Category depending on their findings
 - Use algorithm for decision making

Tintinalli's Prognosis Based on Classification System for ED Chest Pain Pts

- I: Acute MI
 - Immediate revascularization
- II: Probable acute ischemia: high risk for adverse events
 - Evidence of clinical instability
 - Ongoing pain thoguht to be ischemia
 - Pain at rest associated with ischemic ECG changes
 - One or more positive myocardial markers
 - Positive perfusion imaging study

Tintinalli's Prognosis Based on Clasification for ED chest pain pts

- III: Possible acute ischemia: Intermediate risk for adverse events
 - Rest pain, now resolved
 - New onset of pain
 - Crescendo pattern of pain
 - Ischemic pattern on ECG not associated with pain

Tintinalli's Prognosis Based on Clasification for ED chest pain pts

- IV: A: Probably not ischemia: low risk for adverse events (requires all the following)
 - History not strongly suggestive of ischemia
 - ECG normal, unchanged from previous, or nonspecific changes
 - Negative myocardial markers
- IV: B: Stable angina pectoris: Low risk for adverse events
 - Requires all the following
 - More than 2 wk of unchanged symptom pattern or longstanding symp with only mild change in exertional threshold
 - Normal EKG, unchanged from previous or nonspecific changes
 - Negative myocardial markers

Tintinalli's Prognosis Based on Clasification for ED chest pain pts

- V: Definitely not ischemic. Very low risk for adverse events
 - Requires all the following:
 - Clear objective evidence of non-ischemic symptoms
 - ECG normal, unchanged from previous or nonspecific changes
 - Negative initial myocardial markers

Algorithm for risk-based decision making in CP (Tintinalli, 2004)

- Initial Evaluation of CP
 - Cardiac monitor
 - Pulse ox
 - VS
 - Oxygen
 - 12-lead EKG
 - Stat myocardial marker eval
 - Other labs
 - CXR
 - ASA
 - MAKE A DISPOSITION DECISION < OR EQUAL TO 1 HOUR AFTER ARRIVAL

Algorithm for risk-based diecision making in CP (Tintinalli, 2004)

Risks Classification	Initial EKG	Initial Myocardial Marker	Ischemia Estimate	Disposition
I	Acute MI	N/A	High	Cornonary Reperfusion
II	Nondiagnostic	+/-	-/high	Monitored bed Consider ischemic Therapy
III	Nondiagnostic	Neg	Moderate	Admit
IV	Nondiagnostic	Neg	Low	Ed Low-risk eval

Discharged Pts

- Clear Follow-up instructions
- Instructed to seek prompt attention for worsening CP
- Return to ED if condition worsens
- PMD referral

Pearls

- Normal EKG and Cardiac markers do not rule out MI
- Examine every CXR closely for pneumothorax and aortic dissection
- Obtain bilateral BPs, especially in elderly
- Always treat as the worst condition possible!!!!

References

- Green, GB and Hill, PM (2004). Approach to Chest pain. In: Tintinalli et al: Emergency Medicine: Comprehensive Review. New York: McGraw Hill
- Jesse RL. Kontos MC. Roberts CS. (2004). Diagnostic strategies for the evaluation of the pt presenting with chest pain. *Progress in Cardiovascular Diseases*. 46(5): 417-37.
- Schmulson MJ. Valdovinos MA. (2004). Current and future treatment of Chest pain of presumed esophageal origin. Gastroenterology Clinics of North America. 33(1): 93-105, Mar.
- Masud SP. Mackenzie R. (2003). Acute coronary syndrome. Journal of the Royal Army Medical Corps. 149(4):303-10, 2003 Dec.
- Gibler WB. Blamkalns AL. Collins SP. (2003). Evaluation of Chest pain and heart failure in the emergency department; impact of multimarker strategies and b-type natruiretic peptide. *Reviews in Cardiovascular Medicine.* 4 suppl 4:S47-55.
- Conti A. Berni G. (2002). Management strategy of chest pain patients with or without evidence of acute coronary syndrome in the emergency dept. European Journal of Emergency Medicine. 9(4): 351-7.